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ABSTRACT

The solution of small-strain elastic-plastic stress analysisproblems by the p-
version of the finite element method is discussed. The formulation is based on
the deformation theory of plasticity and the displacement method. Practical real-
ization of controlling discretization errors for elastic-plastic problems is the main
focus of the paper. Numerical examples, which include comparisons between the
deformation and incremental theories of plasticity under tight control of discretiza-
tion errors, are presented.
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INTRODUCTION

This paper is concernedwith application of the p-versionof the finite element

method to elastic-plastic stressanalysisproblemswith emphasison the deforma-

tion theory of plasticity. Our interest in this subject is motivated by the following

considerations:

(1) The effects of a single overload event on structures made of ductile materials

are of substantial practical importance. Such effects can be well represented

by mathematical models based on the deformation theory plasticity [1], [2].

This is illustrated by four examples.

(2) The propagation of cracks in strain-hardening materials is generally correlated

with the J-integral. The J-integral is based on the deformation theory of

plasticity [3], [4].

(3) The p-version is not susceptible to Poisson ratio locking and hence correct

limit loads are obtained. In the conventional (h-version) locking occurs when

the displacement formulation is is used. For this reason alternative formula-

tious, generally known as mixed methods, must be employed. See, for exam-

ple, [5]).

(4) Realistic mathematical models of real physical systems must have a capability

to provide initial estimates for the effects of nonlinearities at a low computa-

tional cost. The deformation theory of plasticity serves this purpose well.

(5) Adaptive control of discretization errors is more important in the case of

nonlinear problems than in the case of linear problems because the initial

discretization may not be adequate throughout the solution process, hence

errors may accumulate in the course of iteration. The p-version, which uti-

lizes hierarchic finite element spaces, is well suited for controlling discretiza-

tion errors: The number of degrees of freedom can be increased substantially

without mesh refinement. It is particularly advantageous to use adaptive

p-distributions in nonlinear cycles because the gains in performance, as com-

pared with unadapted schemes, are multiplied by the number of iteration

steps.



(6) Prom the point of view of implementation, the data storage requirements for

the deformation theory are much smaller than for the incremental theory.

The p-version of the fnite element method became well established during

the 1980's. Its theoretical basis is now thoroughly developed and its performance

characteristics are extensively documented. We refer to [6] and the references

listed therein. With the exception of adaptive hp-extensions in fluid dynamics

(see, for example, [7]), virtually all documented applications of the p-version have

been to Linear problems, and particularly to problems belonging to the following

two categories:

Category A: The exact solution is analytic on the entire solution domain and its

boundaries.

Category B: The exact solution is analytic on the entire solution domain and its

boundaries, with the exception of a finite number of points (in three dimensions

finite number of points and lines). The points where the solution is not analytic

are called singular points.

The p-version is effective for problems in Categories A and B because expo-

nential convergence rates can be achieved, within the range of accuracy normally

expected in engineering practice, with simple finite element meshes.

The effectiveness of the p-version depends on the smoothness of the underlying

exact solution _sx and the design of the finite element mesh with respect to _sx.

Certain types of nonlinearities, such as material nonlinearities associated with

nonlinear elasticity and the deformation theory of plasticity, and even a broad

class of problems solved by the incremental theory of plasticity, do not perturb

the smoothness of the underlying exact solution significantly. Therefore the p-

version is an effective method for solving such problems. In fact, the performance

characteristics of the p-version can be expected to be substantially the same as

in the case of linear problems belonging in categories A and B. This expected

behavior has been confirmed with respect to a set of benchmark problems, four of

which are presented in this paper.

The assumptions on which the deformation theory of plasticity is based; the

elastic-plastic compliance matrices for the cases of plane stress, plane strain and

axisymmetric problems; an outline of the algorithmic procedure and examples are

presented in this paper.
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FORMULATION OF THE MATHEMATICAL PROBLEM

The cases of plane stress, plane strain and axially symmetric problems, that is,

two-dimensional formulations, are considered in the following. The formulations

are based on the displacement method.

Notation.

The components of the displacement vector _ are denoted by u. -- u.(z,y) and

uy = uy(z, y) The components of the small strain tensor, by definition, are:

def a t_

" = a'-'z" (1,,)

,,.,a,,,, (lb)
ey = a"'y-

def _ Ul

" = a'-;- (10

"" =_ \ ay +T= / "

In addition, '_-v

of strain. The elastic(resp.plastic)strainswill be indicated by the superscript

e (resp.p). The three principal strainsare denoted by ex,e2,es. The equivalent

elasticstrain isdefined by:

e d,J V_ _/(,I - _)_+ (_ - _,_)_+ (e3- ,;)_ (2,,)
2(1 + p)

where v is Poisson's ratio. The equivalent plastic strain is defined by

_,da=V_-]- _/(_ - 4) 2 + (4 -- 4) 2+ (4 --_)2 (_b)

and the total equivalent strain is, by definition,

_' e + e. (2c)

The uniaxial strain at the onset of yielding is denoted by er.

The stress tensor components axe denoted by _,, _y, #,, r-u. The three prin-

cipal stress components are denoted by (71, _2, _s. The equivalent stress is defined

by:

_. de|
= T _/('_ - "_)_+ (`'_- "s)_+ ('_ - '')_ (3)

(ld)

d,_ _-e., will be used to represent the usual engineering definition

-3-



The componentsof the stress deviator tensor are denoted by _., _y, _,, _.,. By

definition,

1

I

1
=,. - +-.)

(4a)

(4b)

(4c)

(4d)_sy ----1"zy

The second invariant of the stress deviator tensor is denoted by J2 and is

defined by:

J2 de_ 1 "2 -2= + ,;,. (5)

In the case of axial symmetry the independent variables are denoted by r, O,

z instead of =, y, z. In the one-dimensional case (i.e., uniaxial stress state) the

subscripts are omitted.

Assumptions.

The assumptions on which the formulation of the mathematical problem is

based are described in the following.

Assumption 1:

The strain components are much smaller than unity on the solution domain

and its boundary, and the deformations are small in the sense that equilibrium

equations written for the undeformed configuration are essentially the same as the

equilibrium equations written for the deformed configuration.

Assumption 2:

The total strain is the sum of the elastic strain and the plastic strain.

Referring to Fig. 1, in the case of uniaxial stress state the stress-strain law is:

('+e=
E,

where E0 is the secant modulus. Since the elastic part of the strain is related to

the stress by Hooke's law:

E

--4-



where B is the modulus of elasticity, we have:

,-- (6)

/

f 1

Ep

Fig. 1. Typical uniaxiai stress-strain curve.

Assumption 3:

The absolute values of the stress tensor components are non-decreasing and

the stress tensor components remain in a fixed proportion as the deformation

progresses.

Assumption 4:

The plastic strain tensor is proportional to the stress deviator tensor.

Assumptions 3 and 4 allow generalization of the uniaxiai stress state for which

experimental information is available to two and three dimensions. In the case of

uniaxial stress state _ = 2v/3 and hence eq. (6) can be written as:

_'=] _ _.

In two-dimensional problems:

_ =_ ' . '.

-5-
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Rexnark:

In the incremental theory of plasticity based on the yon Mises yield criterion

the following assumption, analogous to Assumption 4, is made: Increments of the

tensor components of the plastic strain are proportional to the first derivatives of

J2 with respect to the corresponding components of the stress tensor. The first

derivatives of J2 with respect _,, _, _, and r=, can be shown to be equal to _, _y,

_. and _=., respectively. Thus, for example;

de = d__ = d_,_..

In the one-dimensional case:

2
de" = de = dA # = .dA

3

hence:

3 dVp .
d_._= _ -g-_,,,. (s)

Analogous relationships hold for the plastic increments of each component of the

strain tensor.

The elutie-plastie material compliance matrix in the ease of plane stress.

Using the definition of the stress deviator, given by (3), and the relationship

between the plastic strain and deviatoric stress (Tb), we have:

{}/31 /r/31/3il{}
"l_y 0 r=y

Using (E} = {_'}+(eP} a relationship is obtained between the total strain components

and the stress tensor:

{i:
_/ffiy 0

oI [1-1/2}E-E. -1/2 " 1 _rU0 + E.-'-T-

2(1+ v) 0 0 ,._

-6-
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The matrix in the brackets is the elastic-plastic material compliance matrix which

is readily invertible to obtain the material stiffness matrix.

Remark:

Referring to Fig. 1 and the definitions for the equivalent plastic strain and

equivalent stress, it can be easily shown that

(E-E0) _ _'

EE, a

In view of Eq. (8), in the incremental theory of plasticity the equation analogous

to (ga) is:

: ilia/1d% = _ 1 &ry + T % "

d'y. v 0 2(1 + _,) drffiv 0 0 rffiy

(_)

The elastic-plastic material compliance matrix in the case of plane strain.

In the case of plane strain we have

_.=_:+e.=o

where

Therefore:

and

1

3{1 E) 3(_ }) (}_. 1 _1 )

1C1-},1-_,],..+..,

1
_. = a. - ] (a, + ay + a.)

= _1 _ 1 [1_ __(1_ 2v)] (a. + %) )

[1 ] [11_. 1= +6T1E. (I - 2_,1 _ffi- g_- (1 - 2L,) cry.
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Similarly:

@, = -- _ _-(1 - 2v) _= + + _-_-(I -

The elastic strain components in terms of the stress components are:

( ) v(_; )1 v rE..1 2v) or=- - (1--2v) _u_'-=_ _-_+_l-

v (3 _E ) 1( v rE,. 2_))_ye_------_ - (1--2v) _=-I-_ 1-_+_-_-{1-

(10a)

(10b)

2(1+ v) (10c)
_:Y= E r_u

and the plastic strain components in terms of the stress components are:

E-E. [_ 1E, ] E-E. [3 1E,(1_2v)]o. (11a)

E - E. 1E. (1- 2_) .= E_ _-_(I -

E-E.

Combining equations (10a,b,c) and (11a,b,c), the elastic-plastic material compli-

ance matrix can be written in the form:

Oll C12 0 ]
[c]_ c_2 c. o

0 0 Css

where-

( ) ]1 v rE..1 2v) + + -2v)

0,2 = ---E (_ - 2-_(1- 2v)) ,-E.E_E..:[_L._4E'IE"(1- 2v)]

oss = 2(I+_) +sB -E •
E EE.

To obtain the elastic-plastic material stiffness matrix, [(7] is inverted.
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The elastic-plastic material compliance matrix in the cue of axial symmetry.

In the axisymmetric case the elastic part of the the radial, circumferential

and axial strain components are related to the corresponding stress components

I

1
_ ffi

1
_: =

by Hooke's law:

(_r -- Vo'# -- vo'z)

--/sO" r -_-O' 0 -- //O's)

--VO. r -- VO"e -_- O's).

The plastic strain components are related to the stress by:

f2/31/31{r}_._-_(_._)/-,_ .. -1_/ _..
_ L-1/s -1/3 2/3.1 o.,

The elastic-plastic compliance matrix is of the form:

def[e] =
(711 C12 C12 0 ]
C12 Cn Cz2

C12 C11L_' X
0 0 C44

where:

Since the elastic-plastic compliance matrix has a special structure, its inverse can

be readily computed to obtain the elastic-plastic stiffness matrix.

-9-



OUTLINE OF THE SOLUTION ALGORITHM

Following is an outline of the procedure used in solving the elastic-plastic prob-

lems based on the deformation theory of plasticity described in the next section.

The procedure is known as direct iteration. The iteration number is represented

by a superscript in brackets.

1. Obtain a linear solution. Ensure that the relative error in energy norm is

small, certainly under 5 percent, preferably under 1 percent. It is good prac-

tice to check the quality of the discretization by observing or computing the

degree of continuity in the stress field.

2. Compute the equivalent elastic strain r' in each Gauss point and let (#)(I) =

3. Using (_)(k), compute the secant modulus E_,h) corresponding to each Gauss

point from the one-dimensional stress-strain curve.

4. In each Gauss point for which _ > er determine the elastic-plastic material

stiffness matrix. Recompute the stiffness matrices for those elements for which

> Ey in one or more Gauss points, and obtain a new finite element solution

_;+I).

5. Using E,(k) and _+i), compute the stress tensor components {_(k+l)) in each

Gauss point, using the total strain computed from _+_) and the elastic-

plastic material stiffness matrix. Determine the elastic strains from {=(k+1))

and the elastic part of the material stiffness matrix, i.e., Hooke's law. Com-

pute the plastic strain by subtracting the elastic strain components from the

corresponding total strain components.

6. Compute equivalent strains (v')(h+l), (ff){k+_) and _{k+l) from (2.a,b,c). If in

each Gauss point the following criterion is met:

[_k+1_ _ _h_I

where _, is a pre-specified tolerance, then stop, else using z{h+l), compute

E,(k+_}, increment/c _/c+ 1 and return to step 3.

-10-



EXAMPLES

The solutions of representative examples are solved in the following. Results

obtained by application of the deformation theory and numerical solution by the

p-version are compared with results obtained by applications of the incremental

theory of plasticity and solutions obtained h- and p-extensions.

The boundary conditions are described in terms of the normal (reap. tangen-

tial) displacement vector component u, (resp. _) and the normal (resp. tangential)

traction vector component T_ (reap. Tt).

Example 1: Plane Strain.

In this example differences in computed data attributable to alternative

elastic-plastic models are examined under tight control of the discretization er-

rors. Two models of elastic-plastic material response are compared: Model I is

based on the deformation theory of plasticity and the yon Mises yield criterion, im-

plemented as described in this paper. The numerical solution was obtained by the

finite element analysis program PEGASYSt. Model 2 is based on the incremental

theory of plasticity and the yon Mises yield criterion. The numerical solution for

Model 2 was obtained by an experimental computer program, called FEASIBLE

[8]. Both programs have p-extension capabilities.

The solution domain and finite element mesh are shown in Figure 2. Along

AB and DE symmetry boundary conditions are applied, that is, _ = Tt = 0. Along

BC T_ = 24, Tt = 0. Along CD T, = 30, Tt = 0 and along EAT, = Tt = 0.

The material is assumed to be elastic-perfectly plastic. Therefore three pa-

rameters characterize the stress-strain relationship: The modulus of elasticity (E)

is I000, Poisson's ratio (v) is 0.3 the yield stress (_r) is 20. The thickness is unity.

The numerical solutions were obtained by the p-version of the Finite element

method using the six-element mesh shown in Fig. 2 and the product space. The

product space of degree p is the span of the set of monomials _', i,y = 0, I,_,... ,p

on the standard quadrilateral element ([_[ _< I, [7[ < I). For both models the number

of Ganssian quadrature points was fixed at 14 × 14 for all p-levels.

t PEGASY$ is a trademark o/" Eng/neer/ng Software Research and Develop-

ment, Inc., 7750 Clayton Road, St. Louis, A_O 63117.

-11-



E

1 0 1 0 6.0 6.0

C

---_X
B

Fig. 2. Solution domain and 6-element mesh for Model 1.

The number of degrees of freedom (N), the potential energy computed from

the finite element solutions (IIrs) and the estimated relative error in energy norm

are given in Table 1 for the linear solution. It is seen that the numerical error at

p = 8 is less than 0.01 percent.

Table 1. Estimated relative error in energy norm

for the linear solution.

p .,V IIrs (e_)8

1 16 -39.9521346350 7.13

2 56 -40.1432844703 1.80

3 120 -40.1554486036 0.44

4 208 -40.1561743285 0.12

5 320 --40.1562305887 0.03

6 456 --40.1562347043 0.01

7 616 -40.1562350709 0.O0

8 800 -40.1562351098 0.O0

CO CO --40.1562351166 0.O0

The tolerances for the errors in the iterative solutions were set so small that

the approximation errors can be considered negligible. Therefore the results show

variations due to the alternative mathematical models of elastic-plastic material

behavior. In Model 1 r_ ffi 0.001 was used (see eq. (12)). In Model 2 the error

-12-



tolerance was set on the residuals in the equilibrium iteration. Specifically, the

tolerance was _(6r)T6r/r_r _< 1.0 -4 where 6r d,_ [6K]z- r, [6K] is the change in

stiffness matrix after the current iteration, z is the current solution vector and r

is the current load vector.

Table 2. Circumferential strain (_,)

at the perimeter of the circular hole. Product space, p=8.

0

degrees

0

22.5

45

67.5

9O

Model 1 Model 2
Relative

di .

0.1340 0.1318 +1.7

0.1272 0.1248 +1.9

0.1029 0.0989 +4.0

0.0604 0.0576 +4.9
0.0354 0.0362 -2.2

Models 1 and 2 are compared on the basis of the circumferential strain (et)

along the perimeter of the circular hole. By definition:

def es + (V

2
e. - _ cos 20 - _ sin 28

2

where s is the angle measured from the positive x-axis. The results are listed

in Table 2. The results for Model 2 were used for reference, in computing the

relative differences shown in Table 2. It is seen that the differences between the

deformation and incremental theories of plasticity are not greater than the errors

in physical experiments on the basis of which alternative yield criteria are tested

and the requisite material properties are determined.

Table 3. p-Convergence of the circumferential strain (_t)

at the perimeter of the circular hole. Model 1, product space.

p N 0=0 0=22.5 ° effi45 ° e=67.5 ° 0=90 °

2 56 0.1383 0.1112 0.0927 0.0610 0.0407

3 120 0.1346 0.1258 0.1013 0.0593 0.0372

4 208 0.1329 0.1268 0.1004 0.0606 0.0372

5 320 0.1340 0.1269 0.1012 0.0604 0.0366

-13-



Control of the discretization errors by p-extension was found to be very effec-

tive. Letting r, = 0.01, and using the default values for the number of quadrature

points, which are p-dependent, it was possible to obtain substantially the same

results as in the case of the extremely tight control of discretization and iteration

errors described above. The results are shown in Table 3.

A similar problem was solved by Gaiin using classical methods [7], [8]. Gaiin

considered a circular opening in an infinite elastic-perfectly plastic medium, sub-

jected to uniform stresses at infinity. Galin's solution is based on the Tresca yield

criterion. Because there are differences in the boundary conditions, as compared

with Models I and 2, strict comparison between Galin's solutions and the solutions

presented herein is not possible. Nevertheless, because the domain is much larger

than the circular opening, the differences caused by the differences in boundary

conditions are very likely to be minor and therefore differences in the solution are

caused primarily by the differences in the yon Mises and Tresca yield conditions.

The contour lines which separate the yielded and unyielded materials for the Gaiin

solution and Models I and 2 are shown in Fig. 3. For Galin's problem this contour

is an ellipse with major axis of 3.05/ro, 1.64/ro where ro is the radius of the circular

hole.

Legend

Model 1

4.0- -- .... Model 2

alin's Solution

2.0--

1.0--

I I I
1.0 2.0 4.0

Fig. 3. Contours separating the yielded and unyielded regions.
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Example 2: Plane Stress.

In this problem we consider the elastic-plastic response of a thin perforated

strip of a strain-hardening material to loading by enforced displacements. The

results of the numerical analysis are compared with those obtained experimentally

by Theocaris and Marketos in [11].

7.0

1.75

\ /A

'" 21 0 "-

C

Fig. 4. Perforated strip. Notation.

The strip is shown in Fig. 4. All dimensions are in inch units. Taking ad-

vantage of symmetry, the solution domain was one fourth of the strip which was

discretized using three finite elements, as shown in Fig. 4. Along AB and DE

symmetry boundary conditions were prescribed (u,, = Tt = 0); along BC normal

displacement (A) was imposed (t_ = A, Tt = 0); along CD and EA the boundary

was stress free (T, = Tt = 0).

The material properties are typical of an aluminum alloy with yield strength

in tension _r = 34, 500 psi, and ultimate strength _urs = 40, 000 psi. The modulus

of elasticity is E = 9.956 x 106 psi, Poisson's ratio v = 0.30, and the plastic tangent

modulus _ = 3.2 x 106 psi. Plane stress conditions were assumed.

The stress-strain curve in uniaxial tension, shown in Fig. 5, was characterized

by five parameters: The slope of the linear part (E), the slope of the constant

strain-hardening part (_), the stress at the end of the linear slope (_ = 2e, ooo

psi), and the smallest values of stress (_2 = 35,500 psi) and strain (_2 = 0.0055)

corresponding to F_.

For each value of the imposed displacement CA), the resultant force F along the

edge of the strip and the maximum strain _, at the point of first yield (which occurs

-15-



4O

3O

2O

I0

Stress (ksi)

0 ' I ;

0 0.006 o.oos 0.01 0.012 0.014
Strain

I

0.002 0.004

Fig. 5. Example 2: Stress-strain curve in tension based on five parameters.

at the edge of the hole) were computed from the finite element solution obtained

for polynomial degree 8 using the trunk space (also known as the 'serendipity'

space). The trunk space of degree p is defined on the standard quadrilateral

element (I I < 1, < 1) as the span of the set of monomiais _n_', _,j = O,l, 2,. . . ,p,

+ Y -< p, augmented by the monomials _'n, _np for p _> 2 and by the monomiai _

for p= 1.

The number of degrees of freedom was 211. The estimated relative error

in energy norm of the starting (linear) solution was 0.23 percent The stopping

criterion for the nonlinear solution was set at r, = 0.001 (see eq. (12)).

Table 4. Results for the perforated strip shown in Fig. 4.

0.0050 0.217 0.469
0.0100 0.433 0.948
0.0125 0.541 1.251
0.0150 0.645 1.686
0.0175 0.744 2.188
0.0200 0.836 2.659
0.0225 0.917 3.273
0.0250 0.981 4.064
0.0275 1.027 5.269
0.0300 1.055 6.862

The results of the analysis for various values of the imposed displacement are

-16--



presented in Table 4 and in Fig. 6. Figure 6 also includes the experimental results

which were extracted by reading the values from the plots provided in [10]. The

normalized stress, =Av/_Y, is defined as the ratio between the average stress and

the yield strength:

_AV F

(7}- Amin O'y

and the normalized strain is defined as the ratio between the strain e= and the

yield strain (_y/E). The plastic region is confined up to the maximum normalized

strain reaching a value of approximately 4.0.

Normalized Stress
1.2

[]

1.0 (3

o/

1 f I

0.8

0.6

0.4

0.2
PEGASYS [Theocaris et al

0.0 _ I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Normalized Strain

Fig. 6. Perforated strip: Average stress vs. Maximal normalized strain

It is seen in Fig. 6 that the computed strain is larger than the experimentally

observed strain. Other investigators reported similar discrepancies. A possible

explanation is that in the case of the numerical solution the strain is reported with

an infinitesimal gauge length wheres experimentally determined strains invariably

involve some gauge length of finite size.

Example =: An _etric problem.

In this problem we consider the elastic-plastic behaviour of a thin-walled

spherical pressure vessel with a cylindrical nozzle under uniform internal pressure.

The results of the analysis for an elastic - perfectly plastic material are compared

-17-



with thoseobtained experimentally by Dinno and Gill in [12], and numerically by

Zienkiewicz in [13].

The generating section and the finite element mesh, consisting of 14 elements,

are shown in Fig. 7. All dimensions are in inch units. The material properties

are typical of a steel alloy with yield strength in tension _r = 40, 540 psi, modulus

of elasticity E = 29.12 x 10e psi, Poiseon's ratio v = 0.30, and zero strain hardening

(,_, =0).

1

CO

O3
IP"-

m

2.8125

I

0.125

0.25

8.687 _1 Ur=_ uz=0

r I

"ill"

"aiD.

.-Jim.

P_,j

,4

A

-.--I

0.545 =1"

Fig. 7. Spherical pressure vessel. Generating section and mesh.

Uniform pressure (T,, = -p, Tt = 0) was imposed on the inner surface of the

vessel. The external surface was stress free (T, ffi Tt = 0). The displacement

constraints (u, ffi u, = 0) are indicated in Fig. 7.

The objectives of the analysis were to determine the vertical displacement

of point A (= A) for a range of pressure values which cause the vessel to yield

extensively and to determine the size and shape of the resulting plastic zone.

A sequence of linear solutions was obtained by p-extension using the trunk

space. The estimated relative error in energy norm of the finite element solution
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Table 5. Results for the pressure vessel (Example 3).

Pressure Displ. u_

(psi) (in)

760 7.02 × I0-s

900 8.51 x 10-s

I000 10.78 x I0 -s

1080 15.34 x I0 -s

1120 19.66 x 10 -s

1140 22.45 x 10 -s

1160 27.91 x 10 -s

1180 35.65 × I0 -s

1200 51.44 × 10 -s
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400 /

200

0 r
0.0 10.0 20.0

m' I

PEGASYS

[] Dinno and Gill

"1- Zienkiewicz

r I

30.0 40.0 60.0 60.0

Vertical Deflection of A (x 1000 in)

Fig. 8. Example 3: Internal pressure vs. axial displacement =A.

at polynomial degree of 8 (trunk space), was 1.0percent. There were 1056 degrees

of freedom. The nonlinear analysis was performed at p-level8 with the stopping

criterionr== 0.01 (seeeq. (12)). The resultsof the analysis for various values of

the internalpressure are presented in Table 5 and in Fig. 8 which also includes the

experimental and the finiteelements resultsgiven in [12].It isworth noting that

the plasticzone spreads over the entiresectionof the nozzle-sphere intersectionfor

values of p ___9oo psi (see Fig. 9). Good agreement with the experimental results

was obtained even for high values of pressure. The boundaries of the plasticzone

for various values of the applied pressure axe shown in Fig. 9. These resultsaxe

substantiallythe same as those presented in reference [13].
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Fig. 9. Example 3: Boundaries of the plastic zone for various pressure values.

Example 4: Limit load in the cue of plane =train.

In reference [5] Nagtega_l, Parks and Rice observed that finite element so-

lutions based on the displacement formulation exhibit much too stiff" response in

the fully plastic range. Consequently, finite element solutions often exceed the

limit load by substantial amounts and in some cases have no limit load at all.

This is because plastic deformation occurs at a constant volume. In h-extensions

based on the displacement formulation the constant volume constraints grow at

the same or comparable rate as the number of degrees of freedom, hence locking

occurs. This point is discussed in some detail in [6] also. Locking does not occur in

p-extensions, however [6], [14]. The following example demonstrates that the for-

mulation described in this paper will give the correct limit load when p-extension

is used.

The most challenging example presented in reference [5] is the computation of

the limit load for a deep double-edge-notch (DEN) plane strain tensile specimen.

The example is challenging because the crack is very deep, the ligament is only

1/gth of the crack size, hence the crack tip singularity is strong.

The solution domain is shown in Fig. 10. The boundary conditions are as

follows: On segments AB and EA symmetry conditions are prescribed (_ = _ =

0); on segment BC uniform normal displacement is imposed (=, = 6/2, _ = o);
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Fig. I0. Solution domain. Example 4.

C

1.0

B

segments CD and DE are stress free (T, = T, = 0). The modulus of elasticity and

Poisson's ratio were 1.0 and 0.3 respectively, the yield stress was 1.0 also.

The finite element mesh was graded in geometric progression toward the sin-

gular point using the grading factor of 0.15. In addition, the mesh quality was

checked by plotting the stress contours in the course of the nonlinear computa-

tions. The smoothness of the stress contours across interelement boundaries is an

indicator of mesh quality. With the exception of the final load case, the trunk

space at p = s was used. The number of degrees of freedom was 2143. In the

final load case the product space was used at p = s. The corresponding number of

degrees of freedom was 4183.
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2.0
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1.0

0.5

0.0
0

Net Stress/Yield Strength
3.5

, I ' t

2 4 6 8

Normalized Displacement

PEGASYS

Theoretical Limit

' r '

10 12 14 16

Fig. 11. Example 4. Normalized average stress vs. normalized displacement.

For the yon Mises yield condition the limit load in terms of the net stress on

the ligament is given by _t_,, = (2 + ,r)_r/v_ _ 2.97_y. The normalized stress (i.e.,

-21-



the average stress on the ligament divided by _r is plotted against the normalized

displacement in Fig. 11. The normalized displacement is defined by E6/(_rw)

where w is the width of the strip (in this example tp = 2.0). It is seen that the

theoretical limit load is reached at high values of the imposed displacement.
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SUMMARY AND CONCLUSIONS

The deformation theory of plasticity is a useful model of elastic-plastic be-

havior under certain restrictive assumptions which were described in this paper.

On comparing the deformation theory with the incremental theory in a care-

fully controlled numerical experiment, Example 1, it was found that the differences

are smaller than errors in physical experiments designed to test alternative hy-

potheses concerning elastic-plastic constitutive relationships and the natural vari-

ations in elastic-plastic material properties. In this experiment the plastic zone

was completely confined by an elastic zone and the exact solution was smooth.

The other examples point to the same conclusion: In the numerical exper-

iments described under Examples 2 to 4 the accuracy of the reference solutions

was not known, nevertheless it can be said that the results obtained by means

of the deformation theory were within a few percent of results reported by other

investigators based on the incremental theory.

While of course general conclusions from a few experiments would not be

warranted, the results are consistent with those obtained by Hodge and White [1]

and with Budiansky's observation that "deformation theories of plasticity may be

used for a range of loading paths other than proportional loading without violation

of the general soundness of a plasticity theory" [2]. In fact, the differences are so

small that physical experiments could not distinguish between the deformation

theory and the incremental theories of plasticity in any of the examples discussed

in this paper.

The formulation of the elastic-plastic problem described in this paper is based

on the displacement method. This is possible because p-extensions are not sus-

ceptible to Poisson ratio locking. The correct limit loads are obtained.

It has been demonstrated for the deformation theory of plasticity that p-

extensions are effective for controlling errors of discretization associated with

elastic-plastic material behavior. Similar results have been obtained for the in-

cremental theory even in cases where unloading resulted in reverse plasticity [15].
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